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In this paper, we report a generalized form for the range parameter governing the pair interaction between
soft ellipsoidal particles. For nonequivalent uniaxial particles, we extend the Berne-Pechukas Gaussian overlap
formalism to obtain an explicit expression for this range parameter. We confirm that this result is identical to
that given by an approach that is not widely recognized, based on an approximation to the Perram-Wertheim
hard-ellipsoid contact function. We further illustrate the power of the latter route by using it to write down the
range parameter for the interaction between two nonequivalentbiaxial particles. An explicit interaction poten-
tial for nonequivalent uniaxial particles is obtained by importing the uniaxial range parameter result into the
standard Gay-Berne form. A parametrization of this potential is investigated for a rod-disk interaction.@S1063-
651X~96!05506-7#

PACS number~s!: 61.30.Cz, 34.20.Gj, 07.05.Tp, 61.20.Ja

I. INTRODUCTION

Following the original work performed using models with
purely steric interactions@1–3#, there has been a growing
interest in computer simulations of liquid-crystalline systems
using models with ‘‘soft’’ potentials@3#. For computational
efficiency, most of the models used in the latter have em-
ployed a single anisotropic interaction site per molecule; in
some cases, a purely attractive anisotropic term has been
combined with a spherical core to produce mesogenic behav-
ior @4,5#. While there have been some simulations performed
with idealized@6# and realistic@7# models based on a multi-
site Lennard-Jones approach, the various single-site aniso-
tropic forms available continue to offer a productive route by
which to study order in liquids.

The standard among these anisotropic pair interactions is
the Gay-Berne potential@8#. This uses an approximately el-
lipsoidal range parameter@9# in a shifted Lennard-Jones form
combined with a similarly anisotropic well-depth function.
This range parameter was originally derived by Berne and
Pechukas on the basis of the overlap of two ellipsoidal
Gaussian distributions@9#. Various parametrizations of this
model have been used to study the phase behavior of calam-
itic liquid crystals: nematic and smectic phases have been
observed by several groups@10#. A discotic parametrization
has also been studied and shown to give nematic discotic and
columnar phases@11#. Very recently, Berardi, Fava, and Zan-
noni have reported a biaxial version of the Gay-Berne poten-
tial @12#.

The development of large parallel machines, possessing
computational power equivalent to some hundreds of work-
stations, offers the possibility of far more ambitious simula-
tions, using tens of thousands of interaction sites rather than
the few thousand currently used in typical Gay-Berne simu-
lations. This increase can be exploited either by enhancing
the complexity of the model potentials used~e.g., moving to
atomistic representations! or by enlarging the system size
and continuing to work with idealized potentials.

In seeking a realistically attainable route by which to
model some of the more exotic~and technologically useful!
liquid crystalline phases, a compromise between these two
positions seems a promising path: the cylindrically symmet-
ric anisotropic potentials currently in use appear inadequate,
while ~computationally expensive! atomistic models do not
represent an efficient means by which to study phase behav-
ior. Models comprising several anisotropic sites per mol-
ecule therefore appear to offer a reasonable option~indeed,
this was the basis of the original Berne and Pechukas paper
@9# from which the Gay-Berne potential evolved!.

This option is already available to some extent in that
assemblies of identical Gay-Berne units and Lennard-Jones
sites can be simulated using the potentials currently avail-
able; initial studies of such assemblies have already been
attempted@13,14#. The restriction to identical Gay-Berne
units is clearly a disadvantage, however, when one considers
the range of structures adopted by real molecules.

In this paper we propose a generalization of the Gay-
Berne potential, which yields the interaction between non-
equivalent uniaxial particles~e.g., one oblate and one pro-
late!. This is achieved by extending the range parameter
function, on which the shape of the Gay-Berne potential is
based, to incorporate mixed interactions. We confirm that, as
pointed out by Perramet al. @15# and echoed in@2#, this
function can also be obtained from an approximation to the
Perram-Wertheim hard-ellipsoid contact function@16#. Since
the Perram-Wertheim expression for the hard-ellipsoid con-
tact function holds for nonequivalent biaxial particles, we are
able to invoke this same approximation to obtain the form of
the Gaussian overlap range parameter for this general case.

The equivalence of the Gaussian overlap and the approxi-
mate hard-ellipsoid contact function routes to the range pa-
rameter is not widely recognized. To emphasize this equiva-
lence, both are presented in Sec. III. We stress that the
resulting expressions are obtainable from existing results
@see, e.g., Eqs.~2.85!–~2.96! of @2##, but consider the Gauss-
ian overlap approach to be worthwhile since it provides the
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range parameter with its physical significance. We also note
that the simple forms of our final expressions lend them con-
siderable practical utility.

The main motivation for the work presented in this paper
is the extension of the range of anisotropic multisite models,
although its application to mixtures of different single-site
particles is also clear. Thus, this extended version of the
potential is expected to be of use in studying a range of
physical systems for which the original Gay-Berne potential
is inappropriate.

The remainder of the paper is arranged as follows. In the
next section, we describe Berne and Pechuka’s formulation
of the overlap problem for identical particles, and its appli-
cation in the Gay-Berne potential. Section III contains the
range parameter derivations described above. Using the
uniaxial particle result as a basis, we then develop an exten-
sion of the Gay-Berne potential for two nonequivalent par-
ticles. Finally, this potential is examined for the case of a
disk interacting with a rod, and a parametrization is calcu-
lated and discussed.

II. THE ORIGINAL MODEL
„IDENTICAL UNIAXIAL PARTICLES …

In their original treatment of the interaction between two
elongated molecules, Berne and Pechukas@9# considered the
case where each molecule is approximated by a uniaxially
stretched Gaussian distribution of the form

G~r !5ugu21/2 exp@2r•g21
•r #

whereg is the matrix

g5~ l 22d2!ûû1d2IO ~1!

andl andd scale the length and breadth, respectively.IO is the
identity matrix andû is a unit vector along the principal axis
of the particle. Surfaces of constantG~r ! are ellipsoids of
revolution about this axis. By taking the interaction to be
dependent on the overlap of two similarly stretched Gaussian
distributions, Berne and Pechukas expressed the pair poten-
tial in terms of the orientation-dependent range parameter

s2~ ûi ,ûj , r̂ i j !5
r i j
2

r i j •~g i1g j !
21
•r i j

, ~2!

wherer i j5r i j r̂ i j is the vector linking the centers of mass of
the two particlesi and j . When the two particles are identi-
cal, the eigenvectors ofg i1g j are ûi6ûj and their cross
product. Equation~2! then reduces to@8#

s~ ûi ,ûj , r̂ i j !5s0F12
x

2 H ~ r̂ i j •ûi1 r̂ i j •ûj !
2

11xûi•ûj

1
~ r̂ i j •ûi2 r̂ i j •ûj !

2

12xûi•ûj
J G21/2

, ~3!

wheres05&d and

x5@~ l /d!221#/@~ l /d!211#. ~4!

In their formulation of the problem, Berne and Pechukas
used their range parameter in a potential of the stretched
Gaussian form

U~ ûi ,ûj ,r i j !5«0«1~ ûi ,ûj !exp@2r i j
2 /s2~ ûi ,ûj , r̂ i j !#,

~5!

where«0 is the well-depth parameter and the strength anisot-
ropy function is given by

«1~ ûi ,ûj !5@12x2~ ûi•ûj !
2#21/2. ~6!

In the ensuing years, several extensions and refinements
were made to this basic potential~see@17# for a brief review!
in order to remove some of its more unrealistic features. The
most notable of these were the replacement of the stretched
Gaussian potential of~5! with a Lennard-Jones form@18#
and, subsequently, a shifted Lennard-Jones form@8#. Thus,
in the contemporary Gay-Berne model, the interaction is
written as

U~ ûi ,ûj ,r i j !54«~ ûi ,ûj , r̂ i j !F S s0

r i j2s~ ûi ,ûj , r̂ i j !1s0
D 12

2S s0

r i j2s~ ûi ,ûj , r̂ i j !1s0
D 6G , ~7!

where the strength anisotropy function is now

«~ ûi ,ûj , r̂ i j !5«0«1
n~ ûi ,ûj !«2

m~ ûi ,ûj , r̂ i j !. ~8!

Here, the powersm and n are adjustable exponents and
«2~ûi ,ûj ,r̂ i j ! is given by

«2~ ûi ,ûj , r̂ i j !512
x8

2 H ~ r̂ i j •ûi1 r̂ i j •ûj !
2

11x8ûi•ûj

1
~ r̂ i j •ûi2 r̂ i j •ûj !

2

12x8ûi•ûj
J . ~9!

The additional parameter,x8, is given by the ratio of end-end
to side-side well depths via

x85@12~«E /«S!
1/m#/@11~«E /«S!

1/m#. ~10!

While the form of the potential used to describe the interac-
tion has been modified considerably since the original for-
mulation, it is striking that the range parameter on which it is
based,s~ûi ,ûj ,r̂ i j !, has remained unchanged from that ob-
tained by Berne and Pechukas. In seeking a form for the
interaction betweennonequivalentellipsoidal particles, we
note that the range parameter of Eq.~3! lacks the required
symmetries. What is required is a generalized equation for
this fundamental quantity. In principle, this can then be in-
serted into any of the various forms of the potential function,
though we shall concentrate on the Gay-Berne form.

III. GENERALIZATION OF THE RANGE PARAMETER
FOR NONEQUIVALENT PARTICLES

A. Uniaxial ellipsoids via the Berne-Pechukas route

In the following, we consider two cylindrically symmet-
ric, ellipsoidal particles,i and j , with lengths ~breadths!
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scaled byl i and l j ~di and dj !, respectively. We place no
restrictions on the values of the length and breadth variables,
so that each of the particles can be oblate, prolate, or spheri-
cal. In Table I, we list and label the five independent arrange-
ments for which the dot products ofûi , ûj , and r̂ i j are all
equal to either zero or unity.

Following Berne and Pechukas, we wish to define the
range parameter, which governs the interaction, in terms of
the overlap of two appropriately stretched Gaussians. To this
end, we return to Eq.~2! and seek eigenvectors of the matrix

g i1g j5a i ûi ûi1a j ûj ûj1bIO, ~11!

wherea i5 l i
22d i

2 andb5d i
21d j

2. The orthonormal eigen-
vectors of this matrix are

ê15
a iAa j~ ûi•ûj !yûi1Aa j ûj

$~a i1y21!@11a ia j y
2~ ûi•ûj !

2#%1/2
, ~12a!

ê25
Aa i ûi2a jAa i~ ûi•ûj !yûj

$~a j2y21!@11a ia j y
2~ ûi•ûj !

2#%1/2
~12b!

and their cross product. The corresponding eigenvalues are
l15a i1y211b, l25a j2y211b, andl35b, wherey sat-
isfies the quadratic equation

y2a ia j~ ûi•ûj !
21y~a j2a i !2150. ~13!

In the case where the molecular axes are orthogonal,ê1 and
ê2 reduce toûj and ûi , respectively. We also note that the
eigenvectors and~ûi•ûj )y remain well behaved in the limit
thata i tends toa j . Equations~11! to ~13! can be combined
to yield

r i j •~g i1g j !
21
•r i j5

r i j
2

b F12
1

@11a ia j y
2~ ûi•ûj !

2# H ~a iAa j~ ûi•ûj !yûi• r̂ i j1Aa j ûj• r̂ i j !
2

a i1y211b

1
@Aa i ûi• r̂ i j2a jAa i~ ûi•ûj !yûj• r̂ i j #

2

a j2y211b J G , ~14!

which can be inserted into Eq.~2! to give the generalized range parameters~ûi ,ûj ,r̂ i j !. Further manipulation of Eq.~14! using
~13! allows elimination ofy to give

s~ ûi ,ûj , r̂ i j !5s0F12xH a2~ r̂ i j •ûi !
21a22~ r̂ i j •ûj !

222x~ r̂ i j •ûi !~ r̂ i j •ûj !~ ûi•ûj !

12x2~ ûi•ûj !
2 J G21/2

, ~15!

TABLE I. The relative positions and orientations of the five arrangements used to define the parameters of the well-depth anisotropy
function. The figures illustrate the arrangements for a rodlike particle~moleculej ! and a disklike particle~moleculei !. These are differen-
tiated by the marking of symmetry axes.
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where

s05Adi21dj
2, ~16!

x5S ~ l i
22di

2!~ l j
22dj

2!

~ l j
21di

2!~ l i
21dj

2!
D 1/2, ~17!

and

a25S ~ l i
22di

2!~ l j
21di

2!

~ l j
22dj

2!~ l i
21dj

2!
D 1/2. ~18!

To make a closer comparison with the Berne-Pechukas
form @i.e., Eq. ~3!#, we note that Eq.~15! can also be ex-
pressed as

s~ ûi ,ûj , r̂ i j !5s0F12
x

2 H ~a r̂ i j •ûi1a21r̂ i j •ûj !
2

11xûi•ûj
1

~a r̂ i j •ûi2a21r̂ i j •ûj !
2

12xûi•ûj
J G21/2

, ~19!

although Eq.~15! is likely to be the more useful form in
practice~when x is imaginary, for example!. We note that
the great similarity between this generalizeds~ûi ,ûj ,r̂ i j ! and
that of Berne and Pechukas ensures that any computational
overhead associated with its use will be trivial.

In Sec. IV we go on to discuss a full implementation of
Eq. ~15! in the Gay-Berne potential; here we comment
briefly on certain limiting cases. Firstly, we note that on
setting l i5 l j and di5dj , we regain the identical particle
result of Berne and Pechukas: the expression forx reverts to
that of Eq.~4!, while s0 anda go to&d and unity, respec-
tively.

If one of the particles is made spherical, for example,
l i5di5d, then bothx anda go to zero. The range param-
eter, nevertheless, remains finite in this limit and tends
smoothly to

s~ ûj , r̂ i j !5s0@12xa22~ r̂ i j •ûj !
2#21/2, ~20!

where

x

a2 5
l j
22dj

2

l j
21d2

. ~21!

We note that this is consistent with the rod-sphere form
given in Ref.@9#.

Finally, if we consider the case where one of the particles
is oblate while the other is prolate, we note that bothx and
a2 become imaginary. This particular choice of parameters
follows from the original derivation of Berne and Pechukas
@9#. An alternative choice of parameters based on the~always
real! coefficientsa62x andx2 employed in Eq.~15! can be
postulated simply. Such a choice is made in Sec. III B. Thus,
the range parameter we have derived can be used for all
choices of l ’s and d’s, and is fully consistent with the
equivalent functions suggested previously for systems of
identical particles and of rod-sphere mixtures.

B. Uniaxial and biaxial ellipsoids via the
Perram-Wertheim route

The route just outlined does not represent the only ap-
proach by which to calculate the uniaxial range parameter. It

has been shown by Perramet al. @15# that the range param-
eter of Berne and Pechukas’ Gaussian overlap potential is
identical to a simple approximation of the hard-ellipsoid con-
tact function due to Perram and Wertheim@16#. The true
overlap function for hard ellipsoidsi , j may be written in the
form

FPW~ ûi ,ûj ,r i j !5r i j
2 f PW~ ûi ,ûj , r̂ i j !5r i j

2 max
0<l<1

f l~ ûi ,ûj , r̂ i j !,

~22!

where fPW~ûi ,ûj ,r̂ i j ! and f l~ûi ,ûj ,r̂ i j ! depend on particle
orientations, not separations, andf l~ûi ,ûj ,r̂ i j ! additionally
has a parametric dependence onl. All of these functions also
depend on the dimensions of the ellipsoids. When
FPW~ûi ,ûj ,r i j !,1 the two ellipsoids overlap; when
FPW~ûi ,ûj ,r i j !.1 they do not; FPW~ûi ,ûj ,r i j !51 is the
tangency condition. Explicit expressions forFPW~ûi ,ûj ,r i j !
are given by Perram and Wertheim@16# for the case of gen-
eral spheroids~not necessarily identical! and for the special
case of identical, axially symmetric, ellipsoids of revolution.
The expression is equivalent to Vieillard-Baron’s criterion
@19# for ellipsoid overlap; some discussion of the two ap-
proaches, and their use in simulations, appears elsewhere@2#.
Because of the scaling withr i j

2 evident in the above equa-
tion, it is clear that

sPW~ ûi ,ûj , r̂ i j ![
1

Af PW~ ûi ,ûj , r̂ i j !
~23!

is the distance of closest approach for hard ellipsoids with
the specified orientations.

As pointed out in@15#, and echoed in@2#, sPW~ûi ,ûj ,r̂ i j !
reduces to the Gaussian overlap range parameter ifl is set to
1
2, i.e.,

s~ ûi ,ûj , r̂ i j ![
1

Af 1/2~ ûi ,ûj , r̂ i j !
. ~24!

Since f l~ûi ,ûj ,r̂ i j ! for lÞlmax is an underestimate of
f PW~ûi ,ûj ,r̂ i j !, sos~ûi ,ûj ,r̂ i j ! is anoverestimateof the dis-
tance of closest approach for two hard ellipsoids@2,15#.
Thus, in some sense, Berne and Pechukas’ Gaussian overlap
shape parameter can be viewed as a simplified approxima-
tion to the hard-ellipsoid contact function.
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For the case of nonequivalent uniaxial ellipsoids, we can
easily verify that f 1/2~ûi ,ûj ,r̂ i j ! is indeed equal to
s~ûi ,ûj ,r̂ i j ! as defined in Eq.~15!. From Ref.@16#, for two

axially symmetric ellipsoids with principal semiaxes of
lengthai ,aj , and degenerate transverse semiaxes of length
bi ,bj , we obtain

f 1/2~ ûi ,ûj , r̂ i j !5
1

4D F11
cx~ r̂ i j •ûi !

21cy~ r̂ i j •ûj !
21cxcy~ r̂ i j •ûi !~ r̂ i j •ûj !~ ûi•ûj !

12cxcy~ ûi•ûj !
2 G , ~25!

where

D5 1
2 ~bi

21bj
2!,

cx5
bi
22ai

2

bj
21ai

2 , ~26!

cy5
bj
22aj

2

bi
21aj

2 .

Some elementary manipulations are sufficient to show that
this is identical to Eq.~15!, with

x25cxcy ,

xa252cx ,
~27!

x/a252cy ,

s0
254D.

Unlike x anda2, the parameterscx , cy , andD are always
real. Note also that the original Gaussian overlap ‘‘length’’
and ‘‘breadth’’ parameters map onto the semiaxis lengths as
l i5&ai and di5&bi . Thus, for two identical spheres,
s052b5&d. Note also the nonadditivity of the radii for
unequal spheres, a consequence of the approximation made
in settingl51/2.

For the biaxial form of the Gay-Berne potential, there is,
again, a direct, approximate, relationship between the Gauss-
ian overlaps~ûi ,ûj ,r̂ i j ! and an underlying hard-spheroid
overlap function. Once more we follow the derivation of
Perram and co-workers@15,16#; see also Ref.@2#, Eqs.
~2.85!–~2.96!. It is useful to define the three orthogonal
semiaxis vectors for each moleculei ,

ai
b5ai

bûi
b ; b5x,y,z, ~28!

where û i
b are the corresponding unit vectors andai

b the
semiaxis lengths. Then a dyadic matrix is defined for each
molecule:

A i[(
b

ai
b

^ai
b5(

b
~ai

b!2ûi
b

^ ûi
b . ~29!

The form for the reduced Perram-Wertheim function is

f l~$ûi
b%,$ûj

b%, r̂ i j !5l~12l! r̂ i j •CO • r̂ i j , ~30!

where

CO 5@~12l!A i1lA j #
21. ~31!

In computer simulations, it is straightforward to perform the
333 matrix inversion on the right-hand side of Eq.~31! nu-
merically, and thus determine the shape parameter. This is
the procedure adopted by Allen@20# for f l~$û i

b%,$û j
b%,r̂ i j ! in

simulating biaxial hard spheroids using the exact Perram-
Wertheim criterion. A faster alternative, remarked in Ref.
@15# is to calculate Eq.~30! as the scalar productr•X where
X is the solution of the linear equationsCX5r .

However, it is also possible to express the inverse analyti-
cally. For the casel51

2, we may write@see Eqs.~2.95!–
~2.96! of Ref. @2##

CO 52F ~A i1A j !
22c1~A i1A j !1c2IO

c3
G , ~32!

where

c15(
b

@~ai
b!21~aj

b!2#, ~33a!

c25~ai
x!2~ai

y!21~ai
y!2~ai

z!21~ai
z!2~ai

x!21~aj
x!2~aj

y!21~aj
y!2~aj

z!21~aj
z!2~aj

x!21F(
b

~ai
b!2GF(

b
~aj

b!2G2(
b

~ai
b
•aj

b!2,

~33b!

c35~ai
x!2~ai

y!2~ai
z!21~aj

x!2~aj
y!2~aj

z!21(
bdk

F12 ~ai
b3ai

d
•aj

k!21
1

2
~aj

b3aj
d
•ai

k!2G . ~33c!

The contractions withr̂ i j that lead fromCO to f 1/2~$û i
b%,$û j

b%,r̂ i j ! are easily done, with

r̂ i j •A i• r̂ i j5(
b

~ai
b
• r̂ i j !

2, r̂ i j •A i
2
• r̂ i j5(

b
~ai

b!2~ai
b
• r̂ i j !

2, r̂ i j •A iA j• r̂ i j5(
bd

~ai
b
•aj

d!~ai
b
• r̂ i j !~aj

d
• r̂ i j !. ~34!
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The final result is

f 1/2~$ûi
b%,$ûj

b%, r̂ i j !5
1

2c3
H(

b
@~ai

b!2~ai
b
• r̂ i j !

21~aj
b!2~aj

b
• r̂ i j !

2#12(
bd

~ai
b
•aj

d!~ai
b
• r̂ i j !~aj

d
• r̂ i j !

2c1(
b

@~ai
b
• r̂ i j !

21~aj
b
• r̂ i j !

2#1c2J . ~35!

The Gaussian overlap shape parameter may again be written
s(ûi ,ûj , r̂ i j )51/Af 1/2(ûi ,ûj , r̂ i j ), and is again, rigorously,
an overestimate of the true closest approach distance of hard
spheroids at the specified orientations. Comparing Eqs.~35!
and~15!, we can see that the two are of the same basic form:
both give as~ûi ,ûj ,r̂ i j ! with a numerator determined by sca-
lar ~triple! products of semiaxis vectors, and a denominator
involving scalar products of axis vectors with the center-
center direction vectorr̂ i j . Equation~35! becomes identical
to ~15! in the limit that both of the particles involved are
made uniaxial.

C. Other approaches

Before closing this section, we note that we have found
another route to Eqs.~15!–~19! based simply on the behavior
of the shape parameter in the five configurations shown in
Table I. Following the original result of Berne and Pechukas,
we assumed the shape parameter to be given by a minimally
modified form of Eq.~3! and tooks~ûi ,ûj ,r̂ i j ! to be given by
the root mean square of the appropriate pair ofl i , l j , di , and
dj for each of the five configurations@e.g., for the side-side
arrangement, takings250.5(d i

21d j
2)#. While this approach

is clearly unsatisfactory in isolation, its success in yielding
the correct final expressions demonstrates that the behavior
of the Gaussian overlap range parameter is both simple and
intuitive.

While the Perram-Wertheim approach offers the simplest
route tos~ûi ,ûj ,r̂ i j ! for the generalized particle shapes we

are concerned with here, it lacks clear physical interpretation.
The impact of settingl51

2 is far from obvious, and an inter-
action potential based on this approximation is hard to justify
until reference is made to the origins of the Gaussian overlap
approach.

The ellipsoid contact function itself,f l~ûi ,ûj ,r̂ i j ! at
l5lmax, has some advantages overs~ûi ,ûj ,r̂ i j !, such as its
adherence to the Lorentz-Berthelot additivity rule. However,
the crucial point in favor of the latter is its simple analytical
form, which is easily differentiable. It can, therefore, be used
in molecular dynamics simulations using ‘‘soft’’ interaction
potentials~this is not practicable with the ellipsoid contact
function, which would require numerical differentiation to
calculate each force contribution!. Thus, while it may be of
interest to perform a Monte Carlo simulation employing the
ellipsoid contact function,s~ûi ,ûj ,r̂ i j ! remains a significant
and more convenient alternative.

IV. APPLICATION TO THE GAY-BERNE MODEL

A. The Gay-Berne strength parameter

The task of importing the generalized shape parameter
into the Gay-Berne potential involves little more than insert-
ing Eqs.~15!–~18! into Eq. ~7!. However, the strength an-
isotropy term of Eq.~9! also needs to be modified; if it were
not, then the well depths for the two differentT configura-
tions ~see Table I! would be equal. By reference to our shape
parameter result we suggest use of the form

«2~ ûi ,ûj , r̂ i j !512x8H a82~ r̂ i j •ûi !
21a822~ r̂ i j •ûj !

222x8~ r̂ i j •ûi !~ r̂ i j •ûj !~ ûi•ûj !

12x82~ ûi•ûj !
2 J , ~36!

where, as previously, we have introduced a single new pa-
rameter,a8. The task of relating the parameters«0, m, n, x8,
anda8 to the system of interest is rather less clearcut than
that experienced in deriving the shape parameter. As evi-
dence of this, we note that there are currently a number of
different strength anisotropy parametrizations being used for
Gay-Berne systems with identical shape anisotropies@10,21#.

In order to gain an indication of how these parameters
relate to given configurations, we list, in Table I, the form of
«~ûi ,ûj ,r̂ i j ! for each of the arrangements listed. From this we
see that«0 is the only relevant parameter for the cross (X)
arrangement and thatn controls the well-depth variation
from the cross to the side-side (S) arrangement.

An initial route to determining the other three parameters
is offered by noting that the expressions given in Table I
represent a series of simultaneous equations inm, x8, anda8:
a numerical solution of these equations should give a suitable
starting point for a fit to a full potential. We stress that this
does not represent a rigorous means by which to parametrize
a given system, however, and urge that this matter be con-
sidered anew for each new set ofl ’s andd’s used.

Before attempting such a parametrization, we note that in
the limit of identical particles, the twoT configurations be-
come equivalent, anda8 goes to unity; Eq.~36! then reduces
to the standard Gay-Berne relationship. Alternatively, if one
of the particles is spherical, then theS, X, and, say,T1
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arrangements, and theE and T2 arrangements become
equivalent. As in the case of the range parameter, bothx8
anda8 then go to zero, while the product,x8a822, remains
finite. Thus, the well-depth anisotropy function becomes

«~ ûj , r̂ i j !5«0@12x8a822~ r̂ i j •ûj !
2#m, ~37!

where

x8a822512S «E
«S

D 1/m ~38!

and«S5«0 . For the rod-sphere interaction, the equivalence
of the S and X arrangements requires thatn be zero. The
remaining parameters,m andx8a822 ~if they are both to be
used!, can be obtained from a fit to the full potential.

B. Parametrization of a rod-disk interaction

In seeking a set of parameters suitable for modeling the
interaction between a rodlike particle and a disklike particle,
we have closely followed the procedure used by Luckhurst
and co-workers in their analyses of the rod-rod and disk-disk
parametrizations of the standard Gay-Berne model@11,17#.
This is based on a Boltzmann weighted average of the inter-
action between a pair of molecules, calculated purely from
the sum of atom-centered Lennard-Jones interactions. While
this procedure has been found to yield potentials that over-
estimate the relative well-depth ratios of the various configu-
rations~due to its neglect of molecular flexibility and other
important factors such as quadrupolar interactions!, it does
offer an objective means by which to compare interactions
between molecules of various shapes.

We have considered the interaction between the rodlike
moleculep-terphenyl~the same basis molecule as was used
in Ref. @17#! and the disklike molecule triphenylene~as used
in Ref. @11#!. In the following, we takeûj to coincide with
the para-axis of thep-terphenyl molecule andûi to run
through the center of, and orthogonal to, the central ring of
the triphenylene molecule. We have obtained an energy-
minimized structure for each of these molecules using the
computational chemistry packageCERIUS2 @22#. For this and
for all subsequent calculations, we have used the same
Lennard-Jones parameters as Luckhurst and Simmonds~ex-
plicitly, sCC53.35 Å, «CC/kB551.2 K, sHH52.81 Å,
«HH/kB58.6 K as given in Allen and Tildesley@23#! and
employed the Lorentz-Berthelot mixing rules. Keeping all
internal degrees of freedom fixed, we have then calculated
the interaction energy of the two molecules,
U~ûi ,ûj ,r i j ,f i ,f j !, wheref i (f j ) is the azimuthal angle of
moleculei ( j ). This interaction energy is given by the sum
of the Lennard-Jones contributions from all distinct pairs of
atomic sites on different molecules. Thus,

U~ ûi ,ûj ,r i j ,f i ,f j !5 (
m51

Ni

(
n51

Nj

4«mnF S smn

rmn
D 122S smn

rmn
D 6G ,
(39)

whereNi (Nj ) is the number of sites on moleculei ( j ). In
order to obtain a full potential consistent with the cylindrical
symmetry of our model particles, we have performed a
Boltzmann-weighted average over the azimuthal variables
for each chosen set ofûi , ûj , and r i j . In practice, this has
been achieved by calculating the function

Uav~ ûi ,ûj ,r i j !5
(f i

(f j
U~ ûi ,ûj ,r i j ,f i ,f j !exp@2U~ ûi ,ûj ,r i j ,f i ,f j !/kBT#

(f i
(f j

exp@2U~ ûi ,ûj ,r i j ,f i ,f j !/kBT#
. ~40!

To enable direct comparison of results, we have followed
Luckhurst and Simmonds@17# in using a value of 500 K for
T.

We have calculatedUav~ûi ,ûj ,r i j ! for a range ofr i j for
each of theûi ,ûj ,r̂ i j combinations shown in Table I. The
results of these calculations, which were obtained using a 1
degree increment in the azimuthal sums of Eq.~40!, are
shown as full lines in Fig. 1. We have performed a least-
squares fit of our model potential to these data using the
NAG minimization routine E04JAF. This fit is shown as the
dashed lines in Fig. 1, and corresponds to the parameter
valuess057.6 Å; «0/kB51380 K; a2x523.0; x2525.7;
m53.8; n50.13;x8a82520.11;x8250.46.

From Fig. 1, we observe that this fit is quantitatively rea-
sonable throughout. The properties that relate to the range
parameter variables~i.e., the separations at which the poten-
tial first becomes attractive! are matched particularly well.
All of the fitted curves have shallower minima than the cor-
respondingUav~ûi ,ûj ,r i j ! curves, indicating that the shifted

12-6 form of the Gay-Berne potential is generally unable to
reproduce the shape of a potential composed of a sum of
Lennard-Jones sites. A related discrepancy is that some of
the long-ranged tails appear rather too attractive. Despite
this, the relative well depths of four of the fiveUav~ûi ,ûj ,r i j !
curves are well reproduced~the exception is theE curve,
which is too shallow!.

In their parametrization of the rod-rod potential, Luck-
hurst and Simmonds obtained a well-depth ratio«S/«E of
39.6, with «0/kB54302 K @17#. Emerson, Luckhurst, and
Whatling obtained«E/«S59 for a disk-disk interaction@11#
but did not report any absolute values. The greatest well-
depth ratio we have found in ourUav~ûi ,ûj ,r i j ! data is 10.4
~11.4 in our fitted data!, substantially less than the 39.6 found
for the two rods. This, along with the respective«0 values
obtained, supports intuitive arguments that in a mixture of
~similarly sized! rods and disks, the strongest rod-disk inter-
action will be weaker than the strongest rod-rod and disk-
disk interactions.
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The value we have obtained for the exponentm is broadly
similar to that used in the various simulations of identical
Gay-Berne particles@10,11,17,21#. Our value forn is sub-
stantially smaller than that used for such systems, however.
Such a difference is to be expected; the relevant part of the
strength anisotropy function,«1~ûi ,ûj !, is itself much bigger
than that used in the identical particle interaction, due to the
negative value ofx2 @recall Eqs.~6! and~8!#. Smalln values
should, therefore, be a feature of all rod-disk parametriza-
tions.

The remaining parameters of our fit do not naturally lend
themselves to specific discussion. We note that the
~unprimed! shape parameter variables obtained have given
very good agreement with the input data for the specific case
considered here. This supports continued use of potentials
based on the Gaussian overlap shape parameter. The main
failure of the fit is that it underestimates the relative depth of
theE arrangement. This, along with the general shallowness
of the fitted curves, may indicate that an alternative to the
shifted 12-6 Gay-Berne potential form may yield closer
agreement to realistic molecule-molecule interactions. This

must remain a rather tentative conclusion, however, given
the relatively crude molecular model compared with in this
work.

In conclusion, we have developed a generalized version
of the Gay-Berne potential, which enables calculation of the
interaction between dissimilar uniaxial or biaxial particles.
This interaction potential reduces to the standard Gay-Berne
and Lennard-Jones forms in the appropriate limits. As such,
it is appropriate for use in a number of simulation systems
involving mixtures or assemblies of non-spherical interaction
sites.
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